Back to Search Start Over

Deep learning-based digital twin for intelligent predictive maintenance of rapier loom.

Authors :
Xiao, Yanjun
Li, Rui
Zhao, Yue
Wang, Xiaoliang
Liu, Weiling
Peng, Kai
Wan, Feng
Source :
Journal of Intelligent & Fuzzy Systems. 2024, Vol. 46 Issue 4, p9409-9430. 22p.
Publication Year :
2024

Abstract

The rapier loom works in a complex environment and operates at high speeds. It is inevitable that its performance will deteriorate during the production process, which in turn will cause faults. The development of maintenance has undergone the transition from "regular maintenance" and "post-event maintenance" to "predictive maintenance". In order to achieve the synergistic optimization goal of ensuring operational safety and reducing operational costs, a predictive maintenance method driven by the fusion of digital twin and deep learning is proposed based on the idea of "combining the real with the virtual and controlling the real". Firstly, a digital twin system structure model of rapier weaving machine is constructed, and the overall architecture of digital twin is proposed according to the full operation cycle of rapier weaving machine. Then, the digital twin-driven process parameter evaluation and prediction and health state evaluation and prediction are investigated separately. In order to achieve the evaluation and prediction of process parameters to ensure the efficiency of weaving machine operation, the prediction method of IWOA optimized BP neural network driven by twin data is proposed and the model is updated and optimized based on the martingale distance approach. In order to achieve health state assessment and prediction, we use health index as an evaluation index to characterize the health condition of spindles, and use BiLSTM network to achieve prediction of remaining spindle life and then make maintenance decisions. The results show that there are greater advantages to combining deep learning and digital twin technology for intelligent predictive maintenance of rapier loom. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10641246
Volume :
46
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Intelligent & Fuzzy Systems
Publication Type :
Academic Journal
Accession number :
176907325
Full Text :
https://doi.org/10.3233/JIFS-233863