Back to Search Start Over

Refugia within refugium of Geranium yesoense varieties: a follow-up study using chloroplast genome sequencing data of specimens from Mt. Asama, Japan.

Authors :
Kurata, Seikan
Sakaguchi, Shota
Kurashima, Osamu
Ogawa, Risa
Suyama, Yoshihisa
Nishida, Sachiko
Ito, Motomi
Source :
Biological Journal of the Linnean Society. May2024, Vol. 142 Issue 1, p1-7. 7p.
Publication Year :
2024

Abstract

Recent phylogeographical studies have revealed that refugia sometimes retain high levels of genetic heterogeneity due to multiple colonization events, a phenomenon defined as 'refugia within refugium'. In previous research, we reported a complex genetic structure within the Geranium yesoense complex, an alpine plant found in an interglacial refugium at high elevation in Central Japan, probably resulting from multiple colonization and hybridization events. However, we were unable to evaluate instances of introgression due to limited sample size. In the present study, we performed additional chloroplast genome sequencing, along with Sanger sequencing of selected chloroplast DNA regions, to elucidate the phylogenetic relationships among the refugial populations. The chloroplast genome sequence of a sample from Mt. Asama (an important refugium) was nested within the northern lineage (i.e. var. yesoense and var. pseudopratense), and haplotypes from Mt. Asama and Mt. Ibuki were also grouped with those of the northern lineage. Although our previous study suggested hybridization events between northern and southern lineages (i.e. var. nipponicum) at Mt. Asama, haplotypes from the southern lineage were not detected at range margins. This suggests that directional introgression occurred in these regions. Overall, our results further support that genetic heterogeneity within these refugia was amplified by recolonization and hybridization during past climate oscillations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00244066
Volume :
142
Issue :
1
Database :
Academic Search Index
Journal :
Biological Journal of the Linnean Society
Publication Type :
Academic Journal
Accession number :
177017134
Full Text :
https://doi.org/10.1093/biolinnean/blad121