Back to Search Start Over

Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice.

Authors :
Martino, Michael R.
Habibi, Mohammad
Ferguson, Daniel
Brookheart, Rita T.
Thyfault, John P.
Meyer, Gretchen A.
Lantier, Louise
Hughey, Curtis C.
Finck, Brian N.
Source :
American Journal of Physiology: Endocrinology & Metabolism. Apr2024, Vol. 326 Issue 4, p515-527. 13p.
Publication Year :
2024

Abstract

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/13C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles. NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01931849
Volume :
326
Issue :
4
Database :
Academic Search Index
Journal :
American Journal of Physiology: Endocrinology & Metabolism
Publication Type :
Academic Journal
Accession number :
177023348
Full Text :
https://doi.org/10.1152/ajpendo.00258.2023