Back to Search
Start Over
A simplified weak coupling dynamic analysis method for running safety evaluation of train on bridges under earthquake excitation.
- Source :
-
Engineering Structures . Jun2024, Vol. 309, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- This study proposes a simplified analysis method that couples the bridge and train-track subsystem in a weak form to facilitate the dynamic analysis of the train-track-bridge coupled system (TTBS) under earthquakes. The method includes three main steps: (i) performing dynamic analysis of the bridge under seismic conditions to obtain the response of the bridge deck; (ii) interpolating the bridge displacement beneath each wheelset based on the train's velocity, departure time, and the initial positions of the wheelsets; and (iii) assessing the running safety of the train by incorporating the interpolated bridge response as track irregularity into the train-track coupled system. Steps (i) and (iii) can be analyzed separately using finite element and multibody dynamics software, eliminating the need to create a complex TTBS model that is challenging to achieve within a single software platform. Additionally, based on the method's assumptions, the earthquake excitation on the train can be separated into the seismic inertial effect and seismic-induced bridge deformation, enabling a quantitative analysis of the impact of these two types of excitations on train safety. Taking a 10-span simply supported bridge and a long-span cable-stayed bridge as examples, the proposed method's assumptions are verified by comparing its results with those obtained from a complex TTBS model. Furthermore, the impact characteristics of inertial effects and seismic-induced bridge deformation on train safety for these two types of bridges are analyzed. The proposed method offers robust support for seismic design of bridges and facilitates a comprehensive analysis of the mechanisms through which seismic excitations affect train safety. • Proposal and validation of a simplified method for running safety evaluation of train on bridges under earthquake excitation. • Separation of seismic excitation on the train into seismic inertial effect and seismic-induced bridge deformation. • Analysis of impact characteristics of inertial effects and seismic-induced bridge deformation on train running safety. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01410296
- Volume :
- 309
- Database :
- Academic Search Index
- Journal :
- Engineering Structures
- Publication Type :
- Academic Journal
- Accession number :
- 177107641
- Full Text :
- https://doi.org/10.1016/j.engstruct.2024.118072