Back to Search Start Over

Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi0.5Mn1.5O4//graphite Pouch Cells.

Authors :
Li, Yuanqin
Li, Xiaoqing
Liu, Lixia
Li, Chengfeng
Xing, Lidan
He, Jiarong
Li, Weishan
Source :
Advanced Functional Materials. 5/10/2024, Vol. 34 Issue 19, p1-14. 14p.
Publication Year :
2024

Abstract

A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capacity retention of LiNi0.5Mn1.5O4 (LNMO)//Li cell (29.6%→90.8%) and graphite//Li cell (68.1%→98.3%), but also successfully ensures the long‐term cycle stability of LNMO//graphite pouch cell at 4.9 V. Further electrochemical measurements combining with spectroscopic characterization and theoretical calculations indicate that TFPMDS additive displays three principal functions: 1) Be preferentially oxidized to build a robust cathode electrolyte interphase (CEI) enriched in F/Si species with F‐rich nature of strong oxidation‐resistance. 2) Be able to scavenge the hazardous HF, F−, and H+ through its strong binding with these species and thus to protect LNMO at high‐voltage. 3) Be preferentially adsorbed on the graphite surface to form a "framework", and to co‐construct an elastic solid electrolyte interphase (SEI) after the reduction of ethylene carbonate. Importantly, the Si─O group within TFPMDS is especially important for constructing a "molecular bridge" at the CEI/SEI interphase coupling the inorganic and organic species to improve its compatibility, stability, and elasticity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
19
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
177114775
Full Text :
https://doi.org/10.1002/adfm.202312921