Back to Search Start Over

Liquid Fuel Generation from Onion Shell: An Experimental Approach of Pyrolysis Process.

Authors :
Hossain, Md. Alamgir
Rashid, Fazlur
Akhter, Md. Shamim
Aziz, Muhammad
Hoque, Md. Emdadul
Source :
Energies (19961073). May2024, Vol. 17 Issue 9, p2171. 15p.
Publication Year :
2024

Abstract

Energy demand is rising over time in both developing and developed countries. Therefore, finding new sources of energy is a prime concern now. For this effort, this paper presents the pyrolysis of onion (Allium cepa) shells in a reactor with a fixed bed for generating alternative liquid fuel. This paper also compares alternative fuel characteristics, including higher heating value, viscosity, density, pour point, and flash point, with conventional petroleum fuels at optimal process conditions. The work adopted pyrolysis to produce liquid fuel at a temperature range of 400–550 °C and utilized LPG to provide a heat source. The liquid product (fuel oil) was collected, and non-condensable gas was flared. The liquid product was tested for various properties, and the results of the analyses show that alternative fuel has a higher heating value of 12.227 MJ/kg, density of 800 kg/m3, viscosity of 4.3 cP at 30 °C, pour point below −6.2 °C, and flash point around 137 °C, with a variation due to the volatile matters. To obtain favorable conditions for pyrolysis, some parameters, including bed temperature, sample quantity, average particle size, and operating time, were varied and analyzed. The physio-chemical properties made the alternative fuels isolated from conventional petroleum fuels due to the variation in distillation temperature. This work shows that the fuel oil generated from the pyrolysis of onion shells could be considered an alternative source of fuel. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
9
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
177181916
Full Text :
https://doi.org/10.3390/en17092171