Back to Search Start Over

Targeting Integrin α3 Blocks β1 Maturation, Triggers Endoplasmic Reticulum Stress, and Sensitizes Glioblastoma Cells to TRAIL-Mediated Apoptosis.

Authors :
Kuranaga, Yuki
Yu, Bing
Osuka, Satoru
Zhang, Hanwen
Devi, Narra S.
Bae, Sejong
Van Meir, Erwin G.
Source :
Cells (2073-4409). May2024, Vol. 13 Issue 9, p753. 17p.
Publication Year :
2024

Abstract

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αβ1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin β1. In its absence, generation of full length β1 was reduced, immature β1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734409
Volume :
13
Issue :
9
Database :
Academic Search Index
Journal :
Cells (2073-4409)
Publication Type :
Academic Journal
Accession number :
177182012
Full Text :
https://doi.org/10.3390/cells13090753