Back to Search Start Over

The Simultaneous Detection of Dopamine and Uric Acid In Vivo Based on a 3D Reduced Graphene Oxide–MXene Composite Electrode.

Authors :
Shang, Lingjun
Li, Ruijiao
Li, Haojie
Yu, Shuaiqun
Sun, Xuming
Yu, Yi
Ren, Qiongqiong
Source :
Molecules. May2024, Vol. 29 Issue 9, p1936. 13p.
Publication Year :
2024

Abstract

Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide–MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5–500 µM with a sensitivity of 0.74 µA·µM−1·cm−2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5–60 µM and 80–450 µM, with sensitivity of 2.96 and 0.81 µA·µM−1·cm−2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5–500 µM with a sensitivity of 0.41 µA·µM−1·cm−2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2–500 µM with a sensitivity of 0.11 µA·µM−1·cm−2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
9
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
177182696
Full Text :
https://doi.org/10.3390/molecules29091936