Back to Search Start Over

Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb.

Authors :
Zhang, Jun
Shi, Bo-Qiang
Wang, Bo
Yu, Guo-Qing
Source :
Materials (1996-1944). May2024, Vol. 17 Issue 9, p2083. 17p.
Publication Year :
2024

Abstract

A modified 3D re-entrant honeycomb is designed and fabricated utilizing Laser Cladding Deposition (LCD) technology, the mechanical properties of which are systematically investigated by experimental and finite element (FE) methods. Firstly, the influences of honeycomb angle on localized deformation and the response of force are studied by an experiment. Experimental results reveal that the honeycomb angles have a significant effect on deformation and force. Secondly, a series of numerical studies are conducted to analyze stress characteristics and energy absorption under different angles (α) and velocities (v). It is evident that two variables play an important role in stress and energy. Thirdly, response surface methodology (RSM) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are implemented with high precision to solve multi-objective optimization. Finally, the final compromise solution is determined based on the fitness function, with an angle of 49.23° and an impact velocity of 16.40 m/s. Through simulation verification, the errors of energy absorption (EA) and peak crush stress (PCS) are 9.26% and 0.4%, respectively. The findings of this study offer valuable design guidance for selecting the optimal design parameters under the same mass conditions to effectively enhance the performance of the honeycomb. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
9
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
177185125
Full Text :
https://doi.org/10.3390/ma17092083