Back to Search Start Over

Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites.

Authors :
Huang, Danlian
Huang, Hai
Wang, Guangfu
Li, Ruijin
Xiao, Ruihao
Du, Li
Zhou, Wei
Xu, Wenbo
Source :
Journal of Colloid & Interface Science. Aug2024, Vol. 668, p12-24. 13p.
Publication Year :
2024

Abstract

[Display omitted] The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL−1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL−1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO 4 •- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as C O group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken O O bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
668
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
177198550
Full Text :
https://doi.org/10.1016/j.jcis.2024.04.082