Back to Search Start Over

Design and optimization of circular honeycomb lower limb protection device under blast impact.

Authors :
Qin, Lingyun
Yang, Shuyi
Li, Guibing
Wang, Guosheng
Chen, Zhewu
Li, Hongzhou
Source :
Journal of Sandwich Structures & Materials. Jun2024, Vol. 26 Issue 5, p606-627. 22p.
Publication Year :
2024

Abstract

A circular honeycomb lower limb protection device was proposed to reduce the damage to the occupant's lower limbs under a vehicle under-belly blast. First, a local equivalent model of the occupant-restraint system was established, and drop impact tests and theory were used to validate the model's accuracy. Then, under the same mass, the protection performance of eight lower limb protection devices using circular honeycomb, hexagonal honeycomb, reentrant honeycomb, etc., as sandwiches were compared. It was found that the lower limb protection device with a circular honeycomb sandwich provides the best defence for lower limbs. Subsequently, the effect of gradient structure settings and dimensional parameters on the protection performance of circular honeycomb lower limb protection devices was investigated. Finally, multi-objective optimization has been carried out to further improve its protection performance. The results indicated that the protection performance of the lower limb protection device could be effectively improved by reasonably selecting the cell arrangement, gradient type and gradient interval of the honeycomb sandwich. When the optimized lower limb protection device was employed, the occupant's left and right lower tibial peak forces were decreased to 3.67 kN and 3.55 kN, respectively. Compared with the initial design, the optimized lower limb protection device reduced the left and right lower tibial peak forces by 21.1% and 23.8%, respectively, and the total mass decreased by 51.5%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10996362
Volume :
26
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Sandwich Structures & Materials
Publication Type :
Academic Journal
Accession number :
177216831
Full Text :
https://doi.org/10.1177/10996362231212555