Back to Search Start Over

Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study.

Authors :
Jiang, Yixuan
Zhu, Xinlei
Shen, Yang
He, Yu
Fan, Hao
Xu, Xueyi
Zhou, Lu
Zhu, Yixiang
Xue, Xiaowei
Zhang, Qingli
Du, Xihao
Zhang, Lina
Zhang, Yang
Liu, Cong
Niu, Yue
Cai, Jing
Kan, Haidong
Chen, Renjie
Source :
Environment International. May2024, Vol. 187, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

[Display omitted] • We explored cardiovascular effects of UFP by multi-omics profiling and targeted testing. • Increased blood pressure and arterial stiffness were observed. • Inflammation, oxidative stress, endothelial dysfunction, coagulation, abnormal lipid metabolism and transport were involved. Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0–3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7–12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01604120
Volume :
187
Database :
Academic Search Index
Journal :
Environment International
Publication Type :
Academic Journal
Accession number :
177221839
Full Text :
https://doi.org/10.1016/j.envint.2024.108714