Back to Search
Start Over
Cerebrovascular miRNAs Track Early Development of Alzheimer's Disease and Target Molecular Markers of Angiogenesis and Blood Flow Regulation.
- Source :
-
Journal of Alzheimer's Disease . 2024 Supplement 2, Vol. 99, pS187-S234. 48p. - Publication Year :
- 2024
-
Abstract
- Background: Alzheimer's disease (AD) is associated with impaired cerebral circulation which underscores diminished delivery of blood oxygen and nutrients to and throughout the brain. In the 3xTg-AD mouse model, we have recently found that > 10 cerebrovascular miRNAs pertaining to vascular permeability, angiogenesis, and inflammation (e.g., let-7d, miR-99a, miR-132, miR-133a, miR-151-5p, and miR-181a) track early development of AD. Further, endothelial-specific miRNAs (miR-126-3p, miR-23a/b, miR-27a) alter with onset of overall AD pathology relative to stability of smooth muscle/pericyte-specific miRNAs (miR-143, miR-145). Objective: We tested the hypothesis that cerebrovascular miRNAs indicating AD pathology share mRNA targets that regulate key endothelial cell functions such as angiogenesis, vascular permeability, and blood flow regulation. Methods: As detected by NanoString nCounter miRNA Expression panel for 3xTg-AD mice, 61 cerebrovascular miRNAs and respective mRNA targets were examined using Ingenuity Pathway Analysis for canonical Cardiovascular (Cardio) and Nervous System (Neuro) Signaling. Results: The number of targets regulated per miRNA were 21±2 and 33±3 for the Cardio and Neuro pathways respectively, whereby 14±2 targets overlap among pathways. Endothelial miRNAs primarily target members of the PDE, PDGF, SMAD, and VEGF families. Individual candidates regulated by≥4 miRNAs that best mark AD pathology presence in 3xTg-AD mice include CFL2, GRIN2B, PDGFB, SLC6A1, SMAD3, SYT3, and TNFRSF11B. Conclusion: miRNAs selective for regulation of endothelial function and respective downstream mRNA targets support a molecular basis for dysregulated cerebral blood flow regulation coupled with enhanced cell growth, proliferation, and inflammation. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ALZHEIMER'S disease
*GENE expression
*BLOOD flow
*MICRORNA
*CEREBRAL circulation
Subjects
Details
- Language :
- English
- ISSN :
- 13872877
- Volume :
- 99
- Database :
- Academic Search Index
- Journal :
- Journal of Alzheimer's Disease
- Publication Type :
- Academic Journal
- Accession number :
- 177228812
- Full Text :
- https://doi.org/10.3233/JAD-230300