Back to Search Start Over

Dimerized Acceptors with Conjugate‐Break Linker Enable Highly Efficient and Mechanically Robust Organic Solar Cells.

Authors :
Ding, Yafei
Memon, Waqar Ali
Zhang, Di
Zhu, Yiwu
Xiong, Shilong
Wang, Zhi
Liu, Junfeng
Li, Heng
Lai, Hanjian
Shao, Ming
He, Feng
Source :
Angewandte Chemie International Edition. 5/27/2024, Vol. 63 Issue 22, p1-10. 10p.
Publication Year :
2024

Abstract

Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS‐OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high‐performance small molecular acceptors are very brittle. In this regard, we select thienylene‐alkane‐thienylene (TAT) as the conjugate‐break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY‐m‐TAT‐based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate‐break linker. Most importantly, FDY‐m‐TAT‐based IS‐OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack‐onset strain [COS]=18.23 %), significantly surpassing Y6‐based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate‐break linkers have immense potential in developing highly efficient and mechanically robust OSCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
63
Issue :
22
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
177321150
Full Text :
https://doi.org/10.1002/anie.202403139