Back to Search Start Over

On the Sphere-Decoding Algorithm I. Expected Complexity.

Authors :
Hassibi, Babak
Vikalo, Hans
Source :
IEEE Transactions on Signal Processing. Aug2005 Part 1, Vol. 53 Issue 8, p2806-2818. 13p.
Publication Year :
2005

Abstract

The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In communications applications, however, the given vector is not arbitrary but rather is an unknown lattice point that has been perturbed by an additive noise vector whose statistical properties are known. Therefore, in this paper, rather than dwell on the worst-case complexity of the integer least-squares problem, we study its expected complexity, averaged over the noise and over the lattice. For the "sphere decoding" algorithm of Fincke and Pohst, we find a closed-form expression for the expected complexity, both for the infinite and finite lattice. It is demonstrated in the second part of this paper that, for a wide range of signal-to-noise ratios (SNRs) and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real time—a result with many practical implications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1053587X
Volume :
53
Issue :
8
Database :
Academic Search Index
Journal :
IEEE Transactions on Signal Processing
Publication Type :
Academic Journal
Accession number :
17733444
Full Text :
https://doi.org/10.1109/TSP.2005.850352