Back to Search
Start Over
Simulation of light propagation in medium with an ultrasonically induced refractive index gradient.
- Source :
-
Journal of Applied Physics . 5/21/2024, Vol. 135 Issue 19, p1-9. 9p. - Publication Year :
- 2024
-
Abstract
- Modulation of the refractive index in a medium by external stimuli enables fast and reversible control of light propagation. This technology for controlling light has led to new discoveries in a wide range of research fields from physics to life sciences and has played a major role in the development of photonics devices. In this article, we focus on ultrasound as an external stimulus and have devised a method to control the refractive index of a medium using ultrasound. Our research group has previously discovered that a giant refractive-index gradient (Δn on the order of 10−2) was induced when water was irradiated with high-frequency (100 MHz range), high-intensity (on the order of MPa) ultrasound. Here, we report ray-tracing simulations in a medium with a refractive-index gradient induced by ultrasonic radiation. A numerical model of the refractive-index gradient was developed based on the experimental data, and ray-tracing simulations were performed using the Euler–Lagrange equation. The ray-tracing simulation results were close numerically to the profiles of the laser beam observed in the experiment when the laser beam was incident on the refractive-index-gradient medium. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 135
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 177374524
- Full Text :
- https://doi.org/10.1063/5.0207446