Back to Search Start Over

A microbial knowledge graph-based deep learning model for predicting candidate microbes for target hosts.

Authors :
Pan, Jie
Zhang, Zhen
Li, Ying
Yu, Jiaoyang
You, Zhuhong
Li, Chenyu
Wang, Shixu
Zhu, Minghui
Ren, Fengzhi
Zhang, Xuexia
Sun, Yanmei
Wang, Shiwei
Source :
Briefings in Bioinformatics. May2024, Vol. 25 Issue 3, p1-12. 12p.
Publication Year :
2024

Abstract

Predicting interactions between microbes and hosts plays critical roles in microbiome population genetics and microbial ecology and evolution. How to systematically characterize the sophisticated mechanisms and signal interplay between microbes and hosts is a significant challenge for global health risks. Identifying microbe-host interactions (MHIs) can not only provide helpful insights into their fundamental regulatory mechanisms, but also facilitate the development of targeted therapies for microbial infections. In recent years, computational methods have become an appealing alternative due to the high risk and cost of wet-lab experiments. Therefore, in this study, we utilized rich microbial metagenomic information to construct a novel heterogeneous microbial network (HMN)-based model named KGVHI to predict candidate microbes for target hosts. Specifically, KGVHI first built a HMN by integrating human proteins, viruses and pathogenic bacteria with their biological attributes. Then KGVHI adopted a knowledge graph embedding strategy to capture the global topological structure information of the whole network. A natural language processing algorithm is used to extract the local biological attribute information from the nodes in HMN. Finally, we combined the local and global information and fed it into a blended deep neural network (DNN) for training and prediction. Compared to state-of-the-art methods, the comprehensive experimental results show that our model can obtain excellent results on the corresponding three MHI datasets. Furthermore, we also conducted two pathogenic bacteria case studies to further indicate that KGVHI has excellent predictive capabilities for potential MHI pairs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
25
Issue :
3
Database :
Academic Search Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
177375746
Full Text :
https://doi.org/10.1093/bib/bbae119