Back to Search Start Over

Co-gasification of lignite and spent tea waste for the generation of hydrogen-rich syngas in a fluidized bed gasifier.

Authors :
Saini, Rakesh
Mahajani, Sanjay M.
Rao, Danda Srinivas
Narayan, Ramanuj
Source :
International Journal of Hydrogen Energy. May2024, Vol. 68, p823-833. 11p.
Publication Year :
2024

Abstract

The co-gasification of high moisture and high volatile content low-rank lignite (LG) coal and a common waste generated from the brewed tea leaves was studied in a fluidized bed gasification unit. Multiple experiments were conducted at different temperatures, ranging from 800 °C to 900 °C, at fixed operating parameters to elucidate the catalytic thermo-chemical impact on the gasifier performance parameters. The catalytic effect of alkali and alkaline earth metals (AAEMs), especially CaO, K 2 O, and Na 2 O present in the spent tea waste (STW) sample, on the product gas composition and performance parameters during the co-gasification experiments with LG was demonstrated. Mixed blends of LG and STW showed enhancement in the overall reactivity of the steam gasification runs, compared to the LG-only feed, primarily due to the change in the surface morphology, textures, and pore structures of the solid product ash samples, as identified with the electron spectroscopy analysis. Liquid and product samples were analyzed using characterization techniques such as Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) analytical techniques, along with the proximate, ultimate, and X-ray fluorescence (XRF) analysis of the gasification feed samples. An optimized blend ratio of 20 wt % of STW with LG sample enhanced the volumetric gas composition of H 2 and CH 4 gases from 52.03 % to 61.32 % and 3.98 %–5.45 % (on a dry-N 2 -free basis) with a relatively constant CO gas composition. It showed a reduced CO 2 composition from 28.64 % to 18.25 % (on a dry-N 2 -free basis) for the gasification temperature of 900 °C. Even at the lower gasification temperatures of 800 °C and 850 °C with LG + STW feed, steam gasification experiments showed relatively comparable or superior performance to gasification experiments at 900 °C with LG-only feed. The present study indicated a holistic way to utilize the spent tea waste generated from millions of homes and commercial establishments in various parts of the world with potential application towards synergistic gasification process with other conventional carbon-source materials. [Display omitted] • A novel study of co-gasification of lignite and spent tea waste. • Significantly enhanced hydrogen production with high CGE and CCE by adding STW to lignite. • Synergistic effect of alkali and alkaline earth metals (AAEMs) of STW on gasification performance. • Detailed feed and product characterization studies using XRF, TGA, FTIR, XRD, SEM, etc. • Holistic and sustainable utilization of millions of tonnes of STW generated worldwide. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603199
Volume :
68
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
177391011
Full Text :
https://doi.org/10.1016/j.ijhydene.2024.04.289