Skip to search Skip to main content
  • About Us
    Vision Our Story Technology Focus Areas Our Team
  • Access
    Policies Guides Events COVID-19 Advisory
  • Collections
    Books & Journals A-Z listing Special Collections
  • Contact Us
  1. Jio Institute Digital Library
  2. Searchworks

Searchworks

Select search scope, currently: Articles
  • Catalog
    books, media & more in Jio Institute collections
  • Articles
    journal articles & other e-resources

Help
Contact
Covid-19 Advisory
Policies
  • Bookmarks 0
  • Search history
  • Sign in

Cite

Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning.

MLA

Xin, Lu, et al. “Classification of Paclitaxel-Resistant Ovarian Cancer Cells Using Holographic Flow Cytometry through Interpretable Machine Learning.” Sensors & Actuators B: Chemical, vol. 414, Sept. 2024, p. N.PAG. EBSCOhost, https://doi.org/10.1016/j.snb.2024.135948.



APA

Xin, L., Xiao, W., Zhang, H., Liu, Y., Li, X., Ferraro, P., & Pan, F. (2024). Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning. Sensors & Actuators B: Chemical, 414, N.PAG. https://doi.org/10.1016/j.snb.2024.135948



Chicago

Xin, Lu, Wen Xiao, Huanzhi Zhang, Yakun Liu, Xiaoping Li, Pietro Ferraro, and Feng Pan. 2024. “Classification of Paclitaxel-Resistant Ovarian Cancer Cells Using Holographic Flow Cytometry through Interpretable Machine Learning.” Sensors & Actuators B: Chemical 414 (September): N.PAG. doi:10.1016/j.snb.2024.135948.

Contact
Covid-19 Advisory
Policies
About Us
Academics
Research
Campus Life
Contact
T&C
Privacy Policy