Back to Search Start Over

A Predictive Energy Management Strategy for Heavy Hybrid Electric Vehicles Based on Adaptive Network-Based Fuzzy Inference System-Optimized Time Horizon.

Authors :
Lin, Benxiang
Wei, Chao
Feng, Fuyong
Liu, Tao
Source :
Energies (19961073). May2024, Vol. 17 Issue 10, p2288. 23p.
Publication Year :
2024

Abstract

Energy management strategies play a crucial role in enhancing the fuel efficiency of hybrid electric vehicles (HEVs) and mitigating greenhouse gas emissions. For the current commonly used time horizon optimization methods that only target the trend curve of the optimal battery state of charge (SOC) trajectory obtained offline, which are only suitable for buses with known future driving conditions, this paper proposed an energy management strategy based on an adaptive network-based fuzzy inference system (ANFIS) that optimizes the time horizon length and enhances adaptability to driving conditions by integrating historical vehicle velocity, accelerations, and battery SOC trajectory. First, the vehicle velocity prediction model based on the radial basis function (RBF) neural network is used to predict the future velocity sequence. After that, ANFIS was used to optimize and update the length of the forecast time horizon based on the historical vehicle velocity sequence. Finally, compared with the fixed time horizon energy management strategy, which is based on model predictive control (MPC), the average calculation time of the energy management strategy is reduced by about 23.5%, and the fuel consumption per 100 km is reduced by about 6.12%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
10
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
177489916
Full Text :
https://doi.org/10.3390/en17102288