Back to Search Start Over

Inverse Synthetic Aperture Radar Imaging of Space Targets Using Wideband Pseudo-Noise Signals with Low Peak-to-Average Power Ratio.

Authors :
Anger, Simon
Jirousek, Matthias
Dill, Stephan
Peichl, Markus
Source :
Remote Sensing. May2024, Vol. 16 Issue 10, p1809. 18p.
Publication Year :
2024

Abstract

With the number of new satellites increasing dramatically, comprehensive space surveillance is becoming increasingly important. Therefore, high-resolution inverse synthetic aperture radar (ISAR) imaging of satellites can provide an in-situ assessment of the satellites. This paper demonstrates that pseudo-noise signals can also be used for satellite imaging, in addition to classical linear frequency-modulated chirp signals. Pseudo-noise transmission signals offer the advantage of very low cross-correlation values. This, for instance, enables the possibility of a system with multiple channels transmitting instantaneously. Furthermore, it can significantly reduce signal interference with other systems operating in the same frequency spectrum, which is of particular interest for high-bandwidth, high-power systems such as satellite imaging radars. A new routine has been introduced to generate a wideband pseudo-noise signal with a peak-to-average power ratio (PAPR) similar to that of a chirp signal. This is essential for applications where the transmit signal power budget is sharply limited by the high-power amplifier. The paper presents both theoretical descriptions and analysis of the generated pseudo-noise signal as well as the results of an imaging measurement of a real space target using the introduced pseudo-noise signals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
10
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
177497009
Full Text :
https://doi.org/10.3390/rs16101809