Back to Search Start Over

Quantum Magnetism of the Iron Core in Ferritin Proteins—A Re-Evaluation of the Giant-Spin Model.

Authors :
Hagen, Wilfred R.
Source :
Molecules. May2024, Vol. 29 Issue 10, p2254. 17p.
Publication Year :
2024

Abstract

The electron–electron, or zero-field interaction (ZFI) in the electron paramagnetic resonance (EPR) of high-spin transition ions in metalloproteins and coordination complexes, is commonly described by a simple spin Hamiltonian that is second-order in the spin S: H = D [ S z 2 − S S + 1 / 3 + E (S x 2 − S y 2) . Symmetry considerations, however, allow for fourth-order terms when S ≥ 2. In metalloprotein EPR studies, these terms have rarely been explored. Metal ions can cluster via non-metal bridges, as, for example, in iron-sulfur clusters, in which exchange interaction can result in higher system spin, and this would allow for sixth- and higher-order ZFI terms. For metalloproteins, these have thus far been completely ignored. Single-molecule magnets (SMMs) are multi-metal ion high spin complexes, in which the ZFI usually has a negative sign, thus affording a ground state level pair with maximal spin quantum number mS = ±S, giving rise to unusual magnetic properties at low temperatures. The description of EPR from SMMs is commonly cast in terms of the 'giant-spin model', which assumes a magnetically isolated system spin, and in which fourth-order, and recently, even sixth-order ZFI terms have been found to be required. A special version of the giant-spin model, adopted for scaling-up to system spins of order S ≈ 103–104, has been applied to the ubiquitous iron-storage protein ferritin, which has an internal core containing Fe3+ ions whose individual high spins couple in a way to create a superparamagnet at ambient temperature with very high system spin reminiscent to that of ferromagnetic nanoparticles. This scaled giant-spin model is critically evaluated; limitations and future possibilities are explicitly formulated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
10
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
177498752
Full Text :
https://doi.org/10.3390/molecules29102254