Back to Search Start Over

Thermospheric Exospheric Temperature and Composition Responses on 15 January 2022 Tonga Volcanic Eruption Based on the Ionosonde Observations.

Authors :
Yu, Tingting
Ren, Zhipeng
Li, Shaoyang
Ding, Feng
Zhai, Changzhi
Source :
Geophysical Research Letters. 5/28/2024, Vol. 51 Issue 10, p1-10. 10p.
Publication Year :
2024

Abstract

We report thermospheric exospheric temperature and composition responses on the 15 January 2022 Tonga volcanic eruption. The temperature and composition profiles are inversed from three ionosonde (MHJ45, EG931, FF051) observed electron density profiles (∼150–200 km) using our new method (Li, Ren, et al., 2023, https://doi.org/10.1029/2022ja030988). The retrieved exospheric temperatures all showed obvious eruption‐induced perturbations, with maximum disturbance magnitude of ∼200 K at MHJ45 and ∼100 K at EG931 and FF051. The temperature variations were related to eruption‐excited thermospheric waves and their propagation with different speeds. While column ∑O/N2 had no evident changes similar to temperatures, which were basically consistent with GOLD observations. In comparison, higher thermospheric O/N2 has larger eruption‐related changes, maybe due to the exponential increase of thermospheric wave amplitudes with height. The application of our inversion method, combined with continuous observations and global coverage of ionosonde data, provide a possibility to further investigate thermospheric responses to different geophysical conditions. Plain Language Summary: Extreme volcanic eruptions and resulted tsunami at 04:14:45 UT on 15 January 2022 generated a series of atmospheric waves, which can propagate out globally and up into the thermosphere. The ionosphere responses on this eruption, relative to thermosphere, have been reported a lot due to the large amounts of ionospheric observations. Here, we used the new method proposed by Li, Ren, et al. (2023), https://doi.org/10.1029/2022ja030988 to inverse daytime thermospheric parameters (neutral temperature and composition) from ionospheric electron density profiles (∼150–200 km). We selected ionosonde data at three stations (MHJ45, EG931, FF051) to verify the thermospheric responses during this eruption. The retrieved temperature at three stations showed the obvious eruption‐induced perturbations, but ∑O/N2 not, which were basically consistent with GOLD observations. However, O/N2 in higher thermosphere had larger eruption‐related changes. The comparison with GOLD observations and observed F2 layer peak electron densities verified the credibility of our inversion method again. Thus, the application of the method to the continuous and high‐covering ionosonde data provides a possibility to further investigate thermospheric responses to different geophysical conditions. Key Points: Inversed exospheric temperatures showed obvious eruption‐induced perturbations on the 15 January 2022 Tonga eruption∑O/N2 had no evident eruption‐induced changes similar to the temperature, neither in our inversion data nor in GOLD observationsIonosonde can expand the understanding of thermospheric responses to different geophysical conditions by our inversion method [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00948276
Volume :
51
Issue :
10
Database :
Academic Search Index
Journal :
Geophysical Research Letters
Publication Type :
Academic Journal
Accession number :
177509519
Full Text :
https://doi.org/10.1029/2023GL106659