Back to Search Start Over

Tuning the Optoelectronic Properties of Pulsed Laser Deposited "3D"‐MoS2 Films via the Degree of Vertical Alignment of Their Constituting Layers.

Authors :
Mouloua, Driss
LeBlanc‐Lavoie, Joël
Pichon, Loick
Rajput, Nitul S
El Marssi, Mimoun
Jouiad, Mustapha
El Khakani, My Ali
Source :
Advanced Optical Materials. 5/28/2024, Vol. 12 Issue 15, p1-11. 11p.
Publication Year :
2024

Abstract

Pulsed‐laser‐deposition (PLD) is used to deposit MoS2 thin films at substrate temperatures (Td) ranging from 25 to 700 °C. A Td = 500 °C is identified as the optimal temperature that yields MoS2 films consisting of highly‐crystallized 2H‐MoS2 phase with a strong (002) preferential orientation, a direct optical bandgap (Eg) of ∼1.4 eV and a strong photoresponse of ∼1500%. Raman spectroscopy revealed that the degree of vertical alignment of MoS2 layers in the films also reaches its maximum at Td = 500 °C. High‐resolution‐transmission‐electron‐microscopy has provided a clear‐cut evidence that the PLD‐MoS2 films predominantly consist of vertically aligned MoS2 layers over all the film thickness of ∼90 nm, enabling those "3D" films to behave as a direct‐bandgap "2D‐MoS2" with exceptional optoelectronic properties. Indeed, at Td = 500 °C, the PLD‐MoS2 based photodetectors (PDs) devices are shown to exhibit the highest responsivity (R) and detectivity (D*) values (125 mA W−1 and 9.2 × 109 Jones, respectively) ever reported for large area (≥ 1 cm2) MoS2‐based PDs operating at a voltage as low as 1 V. For the first time, a constant‐plus‐linear relationship between Eg, R, and D* of the PDs and the degree of vertical alignment of the MoS2 layers is established. Such a correlation is fundamental for the controlled growth of PLD‐MoS2 films and the tuning of their properties in view of their integration with standard large‐scale‐integration processing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21951071
Volume :
12
Issue :
15
Database :
Academic Search Index
Journal :
Advanced Optical Materials
Publication Type :
Academic Journal
Accession number :
177511927
Full Text :
https://doi.org/10.1002/adom.202302966