Back to Search Start Over

Tensile Strain‐Mediated Bimetallene Nanozyme for Enhanced Photothermal Tumor Catalytic Therapy.

Authors :
Wu, Jiandong
Liu, Qihui
Jiao, Dongxu
Tian, Bin
Wu, Qiong
Chang, Xin
Chu, Hongyu
Jiang, Shan
Yang, Qi
Liu, Tao
Zhang, Yue
Zhang, Wei
Fan, Jinchang
Cui, Xiaoqiang
Chen, Fangfang
Source :
Angewandte Chemie International Edition. 6/10/2024, Vol. 63 Issue 24, p1-10. 10p.
Publication Year :
2024

Abstract

Nanozymes have demonstrated significant potential in combating malignant tumor proliferation through catalytic therapy. However, the therapeutic effect is often limited by insufficient catalytic performance. In this study, we propose the utilization of strain engineering in metallenes to fully expose the active regions due to their ultrathin nature. Here, we present the first report on a novel tensile strain‐mediated local amorphous RhRu (la‐RhRu) bimetallene with exceptional intrinsic photothermal effect and photo‐enhanced multiple enzyme‐like activities. Through geometric phase analysis, electron diffraction profile, and X‐ray diffraction, it is revealed that crystalline‐amorphous heterophase boundaries can generate approximately 2 % tensile strain in the bimetallene. The ultrathin structure and in‐plane strain of the bimetallene induce an amplified strain effect. Both experimental and theoretical evidence support the notion that tensile strain promotes multiple enzyme‐like activities. Functioning as a tumor microenvironment (TME)‐responsive nanozyme, la‐RhRu exhibits remarkable therapeutic efficacy both in vitro and in vivo. This work highlights the tremendous potential of atomic‐scale tensile strain engineering strategy in enhancing tumor catalytic therapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
63
Issue :
24
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
177626792
Full Text :
https://doi.org/10.1002/anie.202403203