Back to Search Start Over

Urease-producing bacteria enhance the adsorption of Cd on organo-Fe hydroxide coprecipitates.

Authors :
He, Yonghong
Wang, Ke
Zhao, Yunqi
Chen, Zhaojin
Han, Hui
Source :
Separation & Purification Technology. Sep2024, Vol. 344, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

[Display omitted] • Maize-derived DOC inhibited the adsorption of Cd by OFC. • Urease-producing bacterium TJ6 enhanced the adsorption of Cd by OFC. • DOC affects the adsorption of Cd by regulating the oxidation–reduction of Fe. • Strain TJ6 provided more adsorption sites to immobilize Cd. • Strain TJ6 oxidized FeO to Fe 2 O 3 and enhancing the Cd adsorption capacity of OFC. Microorganisms, organic carbon, and iron oxides are important active components in soil that control the availability of heavy metals. In the extensive cultivation areas based on wheat–maize rotation, returning corn straw to the field increases the content of dissolved organic carbon (DOC) in the soil, affecting heavy metal adsorption by iron oxides and thereby threatening the safety of wheat. However, the effects and underlying mechanisms of maize straw-derived DOC on Cd adsorption by ferrihydrite (Fh) are unclear, and the effects of functional strains on Cd adsorption by organo-Fe hydroxide coprecipitates (OFCs) need further study. The effect of DOC on the adsorption of Cd by Fh was studied through batch solution adsorption experiments. Moreover, the mechanisms underlying the synergistic adsorption of Cd by the urease-producing bacterium Enterobacter sp. TJ6 and OFC were studied in adsorption experiments via scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that DOC inhibited the adsorption of Cd by OFC, while strain TJ6 enhanced the adsorption of Cd by OFC. Fe-OH and Fe-O bonds on the surface of Fh were important Cd adsorption sites. DOC affected the adsorption of Cd by Fe-OH and Fe-O, thereby inhibiting the adsorption of Cd by OFC. DOC also served as a reducing agent, reducing Fe 2 O 3 on the surface of OFC to FeO and thus inhibiting OFC adsorption of Cd. The mechanisms by which strain TJ6 enhanced Cd adsorption by OFC included the following: 1) strain TJ6 utilized its own oxidation ability to oxidize FeO on the surface of OFC to Fe 2 O 3 , promoting the secondary precipitation of Cd during the redox process and enhancing the Cd adsorption capacity of OFC; and 2) strain TJ6 immobilized Cd2+ through ion exchange between Cd2+ and H+ in surface amino groups. In conclusion, this study has revealed the mechanism by which urease-producing bacteria regulate the adsorption of Cd by OFC and provides a theoretical basis for safe straw return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil under straw return. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13835866
Volume :
344
Database :
Academic Search Index
Journal :
Separation & Purification Technology
Publication Type :
Academic Journal
Accession number :
177630885
Full Text :
https://doi.org/10.1016/j.seppur.2024.127266