Back to Search Start Over

MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments.

Authors :
Han, Ziyuan
Niu, Yutao
Shi, Xuetao
Pan, Duo
Liu, Hu
Qiu, Hua
Chen, Weihua
Xu, Ben Bin
El-Bahy, Zeinhom M.
Hou, Hua
Elsharkawy, Eman Ramadan
Amin, Mohammed A.
Liu, Chuntai
Guo, Zhanhu
Source :
Nano-Micro Letters. 5/14/2024, Vol. 16 Issue 1, p1-17. 17p.
Publication Year :
2024

Abstract

Highlights: The SiO2 nanofiber membranes and MXene@c-MWCNT6:4 as one unit layer (SMC1) were bonded together with 5 wt% PVA solution. When the structural unit is increased to three layers, the resulting SMC3 has an average electromagnetic interference SET of 55.4 dB and a low thermal conductivity of 0.062 W m−1 K−1. SMCx exhibit stable electromagnetic interference shielding and excellent thermal insulation even in extreme heat and cold environment. A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m−1 K−1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23116706
Volume :
16
Issue :
1
Database :
Academic Search Index
Journal :
Nano-Micro Letters
Publication Type :
Academic Journal
Accession number :
177741463
Full Text :
https://doi.org/10.1007/s40820-024-01398-1