Back to Search Start Over

VSCF/VCI theory based on the Podolsky Hamiltonian.

Authors :
Schneider, Moritz
Rauhut, Guntram
Source :
Journal of Chemical Physics. 6/7/2024, Vol. 160 Issue 21, p1-10. 10p.
Publication Year :
2024

Abstract

While the vibrational spectra of semi-rigid molecules can be computed on approaches relying on the Watson Hamiltonian, floppy molecules or molecular clusters are better described by Hamiltonians, which are capable of dealing with any curvilinear coordinates. It is the kinetic energy operator (KEO) of these Hamiltonians, which render the correlated calculations relying on them rather costly. Novel implementation of vibrational self-consistent field theory and vibrational configuration interaction theory on the basis of the Podolsky Hamiltonian are reported, in which the inverse of the metric tensor, i.e., the G matrix, is represented by an n-mode expansion expressed in terms of polynomials. An analysis of the importance of the individual terms of the KEO with respect to the truncation orders of the n-mode expansion is provided. Benchmark calculations have been performed for the cis-HOPO and methanimine, H2CNH, molecules and are compared to experimental data and to calculations based on the Watson Hamiltonian and the internal coordinate path Hamiltonian. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
21
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
177744975
Full Text :
https://doi.org/10.1063/5.0213401