Back to Search Start Over

Multi-Omics Analysis of a Chromosome Segment Substitution Line Reveals a New Regulation Network for Soybean Seed Storage Profile.

Authors :
Jong, Cholnam
Yu, Zhenhai
Zhang, Yu
Choe, Kyongho
Uh, Songrok
Kim, Kibong
Jong, Chol
Cha, Jinmyong
Kim, Myongguk
Kim, Yunchol
Han, Xue
Yang, Mingliang
Xu, Chang
Hu, Limin
Chen, Qingshan
Liu, Chunyan
Qi, Zhaoming
Source :
International Journal of Molecular Sciences. Jun2024, Vol. 25 Issue 11, p5614. 19p.
Publication Year :
2024

Abstract

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
11
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
177850339
Full Text :
https://doi.org/10.3390/ijms25115614