Back to Search
Start Over
Equivalent Thermal Conductivity of Topology-Optimized Composite Structure for Three Typical Conductive Heat Transfer Models.
- Source :
-
Energies (19961073) . Jun2024, Vol. 17 Issue 11, p2558. 18p. - Publication Year :
- 2024
-
Abstract
- Composite materials and structural optimization are important research topics in heat transfer enhancement. The current evaluation parameter for the conductive heat transfer capability of composites is effective thermal conductivity (ETC); however, this parameter has not been studied or analyzed for its applicability to different heat transfer models and composite structures. In addition, the optimized composite structures of a specific object will vary when different optimization methods and criteria are employed. Therefore, it is necessary to investigate a suitable method and parameter for evaluating the heat transfer capability of optimized composites under different heat transfer models. Therefore, this study analyzes and summarizes three typical conductive heat transfer models: surface-to-surface (S-to-S), volume-to-surface (V-to-S), and volume-to-volume (V-to-V) models. The equivalent thermal conductivity ( k eq ) is proposed to evaluate the conductive heat transfer capability of topology-optimized composite structures under the three models. A validated simulation method is used to obtain the key parameters for calculating k eq . The influences of the interfacial thermal resistance and size effect on k eq are considered. The results show that the composite structure optimized for the V-to-S and V-to-V models has a k eq value of only 79.4 W m−1 K−1 under the S-to-S model. However, the k eq values are 233.4 W m−1 K−1 and 240.3 W m−1 K−1 under the V-to-S and V-to-V models, respectively, which are approximately 41% greater than those of the in-parallel structure. It can be demonstrated that k eq is more suitable than the ETC for evaluating the V-to-S and V-to-V heat transfer capabilities of composite structures. The proposed k eq can serve as a characteristic parameter that is beneficial for heat transfer analysis and composite structural optimization. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 17
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 177858561
- Full Text :
- https://doi.org/10.3390/en17112558