Back to Search Start Over

In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries.

Authors :
Xin, Mingyang
Zhang, Yimu
Liu, Zhenhua
Zhang, Yuqing
Zhai, Yutong
Xie, Haiming
Liu, Yulong
Source :
Molecules. Jun2024, Vol. 29 Issue 11, p2454. 13p.
Publication Year :
2024

Abstract

To realize high-energy-density Li metal batteries at low temperatures, a new electrolyte is needed to solve the high-voltage compatibility and fast lithium-ion de-solvation process. A gel polymer electrolyte with a small-molecular-weight polymer is widely investigated by combining the merits of a solid polymer electrolyte (SPE) and liquid electrolyte (LE). Herein, we present a new gel polymer electrolyte (P-DOL) by the lithium difluoro(oxalate)borate (LiDFOB)-initiated polymerization process using 1,3-dioxolane (DOL) as a monomer solvent. The P-DOL presents excellent ionic conductivity (1.12 × 10−4 S cm−1) at −20 °C, with an oxidation potential of 4.8 V. The Li‖LiCoO2 cell stably cycled at 4.3 V under room temperature, with a discharge capacity of 130 mAh g−1 at 0.5 C and a capacity retention rate of 86.4% after 50 cycles. Moreover, a high-Ni-content LiNi0.8Co0.1Mn0.1O2 (NCM811) cell can steadily run for 120 cycles at −20 °C, with a capacity retention of 88.4%. The underlying mechanism of high-voltage compatibility originates from the dense and robust B- and F-rich cathode interface layer (CEI) formed at the cathode interface. Our report will shed light on the real application of Li metal batteries under all-climate conditions in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
11
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
177861700
Full Text :
https://doi.org/10.3390/molecules29112454