Back to Search Start Over

Investigation the performance of a new fuel produced from the phthalocyanine-gasoline mixture in an internal combustion engine.

Authors :
Uçkan, İrfan
Yakın, Ahmet
Cabir, Beyza
Source :
International Journal of Hydrogen Energy. Jun2024, Vol. 71, p884-893. 10p.
Publication Year :
2024

Abstract

The study involved the utilization of novel developed six distinct fuel, denoted as, PG5, PG10, PG15, PG20, PG25, and PG30 and G100 (pure gasoline). These fuels were derived from various blends of gasoline and phthalocyanines. Experimental investigations were conducted to assess the internal combustion engine's performance in terms of both energy and exergy. The mixtures underwent testing across a range of engine speeds, spanning from 1400 rpm to 3000 rpm. Notably, optimal performance across all fuels and engine speeds was consistently observed at 2600 rpm. In terms of energy and exergy efficiency assessments for all fuels and engine speeds, PG25 fuel demonstrated the highest efficiency levels, with 35% energy efficiency and 33% exergy efficiency at 2600 rpm. Conversely, G100 fuel exhibited the lowest energy and exergy efficiency at the same engine speed, registering values of 27% and 24%, respectively. Meanwhile, with regard to exhaust exergy, G100 fuel demonstrated the highest exhaust energy at 10.69 kW, occurring at 3000 rpm, whereas PG25 fuel exhibited the lowest exhaust exergy, measured at 3.09 kW. It has been observed that N2 gas, one of the exhaust components that affects the exergy of exhaust gases, affects the exhaust exergy to a large extent and this ratio is approximately 50%. In addition, the sustainability index value for all fuels was found to be at most 2600 rpm. It was calculated as 1.50 for PG25 fuel and 1.32 for G100 fuel. • The exergy of phthalocyanine as a fuel examined in internal combustion engines. • To increase efficiency of new fuels in the internal combustion engine. • The newly developed fuel has been shown to be more efficient than gasoline. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603199
Volume :
71
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
177880010
Full Text :
https://doi.org/10.1016/j.ijhydene.2024.05.321