Back to Search Start Over

Dyport: dynamic importance-based biomedical hypothesis generation benchmarking technique.

Authors :
Tyagin, Ilya
Safro, Ilya
Source :
BMC Bioinformatics. 6/13/2024, Vol. 25 Issue 1, p1-28. 28p.
Publication Year :
2024

Abstract

Background: Automated hypothesis generation (HG) focuses on uncovering hidden connections within the extensive information that is publicly available. This domain has become increasingly popular, thanks to modern machine learning algorithms. However, the automated evaluation of HG systems is still an open problem, especially on a larger scale. Results: This paper presents a novel benchmarking framework Dyport for evaluating biomedical hypothesis generation systems. Utilizing curated datasets, our approach tests these systems under realistic conditions, enhancing the relevance of our evaluations. We integrate knowledge from the curated databases into a dynamic graph, accompanied by a method to quantify discovery importance. This not only assesses hypotheses accuracy but also their potential impact in biomedical research which significantly extends traditional link prediction benchmarks. Applicability of our benchmarking process is demonstrated on several link prediction systems applied on biomedical semantic knowledge graphs. Being flexible, our benchmarking system is designed for broad application in hypothesis generation quality verification, aiming to expand the scope of scientific discovery within the biomedical research community. Conclusions: Dyport is an open-source benchmarking framework designed for biomedical hypothesis generation systems evaluation, which takes into account knowledge dynamics, semantics and impact. All code and datasets are available at: https://github.com/IlyaTyagin/Dyport. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712105
Volume :
25
Issue :
1
Database :
Academic Search Index
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
177885186
Full Text :
https://doi.org/10.1186/s12859-024-05812-8