Back to Search Start Over

Advanced impedance mismatch technique for detecting faults in photovoltaic systems.

Authors :
Lamdihine, Najwa
Ouassaid, Mohammed
Source :
Energy Science & Engineering. Jul2024, Vol. 12 Issue 7, p3074-3087. 14p.
Publication Year :
2024

Abstract

This paper presents a comprehensive exploration of the Advanced Impedance Mismatch Technique (AIMT), a novel approach designed for the accurate detection of simultaneous and varied faults within photovoltaic (PV) systems. This investigation integrates a spectrum of fault detection strategies, pinpointing reflectometry as a notably effective tool. Despite its utility, conventional reflectometry applications face critical constraints, notably the limitation to identify only the primary fault location within a PV array and the inability to distinguish between different fault types. This work introduces an innovative mathematical model that estimates the impedance of PV modules, enhancing the reflectometry method to enable the precise identification and localization of multiple defective modules within a string. The proposed technique exhibits a remarkable sensitivity to detect slight impedance differences between a functional PV string and one with defective modules. The validity of the AIMT's mathematical model is corroborated through simulation experiments on a string of seven PV modules afflicted with multiple simultaneous faults. These experiments rigorously evaluate the technique's accuracy in pinpointing the locations of defective modules within a PV string. The outcomes of our proposed N $N$‐times faster AIMT reveal a strong concordance between the simulated reflective signals and the impedance values forecasted by the model, highlighting the proposed method's proficiency in the detailed detection and diagnosis of progressive faults within PV systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20500505
Volume :
12
Issue :
7
Database :
Academic Search Index
Journal :
Energy Science & Engineering
Publication Type :
Academic Journal
Accession number :
178647389
Full Text :
https://doi.org/10.1002/ese3.1809