Back to Search Start Over

Nanoengineered Functional Cellulose Ionic Conductor Toward High‐ Performance All‐Solid‐State Zinc‐Ion Battery.

Authors :
Tu, Wen‐Bin
Liang, Shuang
Song, Li‐Na
Wang, Xiao‐Xue
Ji, Gui‐Juan
Xu, Ji‐Jing
Source :
Advanced Functional Materials. 6/19/2024, Vol. 34 Issue 25, p1-11. 11p.
Publication Year :
2024

Abstract

The rechargeable zinc‐ion battery is regarded as a promising candidate for the next‐generation energy storage system, however, zinc dendrite growth and hydrogen evolution reaction (HER) have greatly hindered the practical application of the battery. Herein, a functionalized, nano‐engineering Zn2+ coordinated carboxylate cellulose solid‐state electrolyte (denoted as Zn‐CCNF@XG) for zinc‐ion battery is constructed through a straightforward approach. According to the experimental and density functional theory (DFT) results of dissociation energy, the notably decreased dissociation energy by −COOH is favorable to Zn2+ de‐coordinating and rapid ion‐hopping in Zn‐CCNF@XG to achieve high ionic conductivity and transference number. More importantly, the engineered molecular channels are beneficial to enlarging the distance between the nanofibril chains, providing a larger space for the movement of Zn2+. Benefiting from the coordination of Zn2+ with −OH in carboxylate cellulose nanofibrils, Zn‐CCNF@XG as a good ionic conductor displays a high ionic conductivity of 1.17 × 10−4 S cm−1 and transference number of 0.78. The Zn||NaV3O8·1.5H2O full cell with Zn‐CCNF@XG maintains a capacity retention of 83.46% with a coulombic efficiency of 99.99% after 3000 cycles (1 A g−1). The proposed strategy by introducing a functional group to cellulose nanofibrils effectively avoids the dendrite and HER, providing valuable guidelines for the practical application of zinc‐ion batteries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
25
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
177962297
Full Text :
https://doi.org/10.1002/adfm.202316137