Back to Search Start Over

Onset of spin entanglement in doped carbon nanotubes studied by EPR.

Authors :
Sperlich, Andreas
Eckstein, Klaus H.
Oberndorfer, Florian
Sturdza, Bernd K.
Auth, Michael
Dyakonov, Vladimir
Mitric, Roland
Hertel, Tobias
Source :
Journal of Chemical Physics. 6/21/2024, Vol. 160 Issue 23, p1-13. 13p.
Publication Year :
2024

Abstract

Nanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them. Shallow charge impurities, on the other hand, are more readily and widely produced by simple redox chemistry, but have not yet been investigated for their spin properties. Here, we use EPR to study p-doped (6,5) semiconducting single-wall carbon nanotubes (s-SWNTs) and elucidate the role of impurity–impurity interactions in conjunction with exchange and correlation effects for the spin behavior of this material. A quantitative comparison of the EPR signals with phenomenological modeling combined with configuration interaction electronic structure calculations of impurity pairs shows that orbital overlap, combined with exchange and correlation effects, causes the EPR signal to disappear due to spin entanglement for doping levels corresponding to impurity spacings of 14 nm (at 30 K). This transition is predicted to shift to higher doping levels with increasing temperature and to lower levels with increasing screening, providing an opportunity for improved spin control in doped s-SWNTs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
23
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
178023959
Full Text :
https://doi.org/10.1063/5.0207502