Back to Search Start Over

Analysis of damage mechanisms and controlling factors of fine particle migration in unconsolidated sandstone reservoirs based on reservoir classification.

Authors :
Wang, Zhao
Yin, Hanjun
Tang, Haoxuan
Hou, Yawei
Yu, Hang
Liu, Qiang
Tang, Hongming
Source :
Energy Science & Engineering. Jul2024, Vol. 12 Issue 7, p2879-2898. 20p.
Publication Year :
2024

Abstract

Particle migration in oil and gas reservoirs is a common phenomenon in the process of oil and gas development, and is considered to be an important reason for the damage of reservoir permeability and the reduction of oil and gas productivity. The mechanism of this phenomenon includes the desorption, migration, and precipitation of particles, which eventually clogs the throat and causes reservoir damage. Therefore, it is necessary to accurately characterize the complex mechanism of particle migration and identify the main controlling factors of particle migration, which is very important for efficient oilfield development and plugging solution. First, the reservoir types are divided into three types and the pore structure models of different types of reservoirs are established. Then, computational fluid dynamics and discrete element coupling method numerical simulation and microscopic visualization of pore throat structure model were combined, to characterize the rules of particles and migration, and analyze the main controlling factors. Finally, a typical model of particle migration and clogging is established. The results show that particle size/throat and particle concentration are the key factors affecting particle plugging, and particle migration has the least effect on the permeability of Type I reservoir and the greatest damage to Type III reservoir. According to the mechanical and hydrodynamic behavior of particles in porous media, three mechanisms and six modes of particle plugging are proposed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20500505
Volume :
12
Issue :
7
Database :
Academic Search Index
Journal :
Energy Science & Engineering
Publication Type :
Academic Journal
Accession number :
178647377
Full Text :
https://doi.org/10.1002/ese3.1781