Back to Search Start Over

Anticipating the lifespan: Predicting the durability of an anode-supported solid oxide fuel cell short stack over 50,000 h.

Authors :
Khan, Muhammad Zubair
Hussain, Amjad
Lee, Seung-Bok
Lim, Tak-Hyoung
Song, Rak-Hyun
Source :
Progress in Natural Science. Jun2024, Vol. 34 Issue 3, p606-613. 8p.
Publication Year :
2024

Abstract

In the present study, the operational lifetime of a solid oxide fuel (SOFC) short stack is predicted by investigating the performance degradation of both the short stack and its cells throughout 1000 ​h at 800 ​°C. The short stack and integral cell voltages are continuously measured during the long-term test, with electrochemical impedance spectroscopy (EIS) conducted every 200 ​h. The short stack voltage decreased rapidly for the initial 200–300 ​h and afterwards, it decreased at a slow rate due to the increase in the Ohmic and polarization resistances in the same manner. Scanning electron microscopy results show that there is no delamination or cracking among constituent layers of the short-stack cells. The single degradation effects of the Ni coarsening in the anode, cation migration and surface segregation in cathode and oxide scale growth in metallic interconnect mesh are successfully integrated into a comprehensive lifetime prediction model. The experimentally measured voltage degradation data of the short stack fits well with the developed mathematical model and allows the successful prediction of the lifetime up to 50,000 ​h. • A lifetime prediction model for SOFC cell and stack is developed. • The model is based on real-time EIS and ex-situ image analysis-based modelling. • The prediction model integrates single degradation effects in SOFC electrodes. • The model is extendable to other materials systems for a wide range of applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10020071
Volume :
34
Issue :
3
Database :
Academic Search Index
Journal :
Progress in Natural Science
Publication Type :
Academic Journal
Accession number :
178090568
Full Text :
https://doi.org/10.1016/j.pnsc.2024.05.012