Back to Search Start Over

Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea.

Authors :
Zhang, Wei
Cao, Yi
Li, Hua
Rasmey, Abdel-Hamied M.
Zhang, Kecheng
Shi, Liming
Ge, Beibei
Source :
Applied Microbiology & Biotechnology. 6/28/2024, Vol. 108 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSVII were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. Key points: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01757598
Volume :
108
Issue :
1
Database :
Academic Search Index
Journal :
Applied Microbiology & Biotechnology
Publication Type :
Academic Journal
Accession number :
178150493
Full Text :
https://doi.org/10.1007/s00253-024-13238-8