Back to Search Start Over

Decoding human in vitro terminal erythropoiesis originating from umbilical cord blood mononuclear cells and pluripotent stem cells.

Authors :
Wang, Xiaoling
Zhang, Wei
Zhao, Siqi
Yan, Hao
Xin, Zijuan
Cui, Tiantian
Zang, Ruge
Zhao, Lingping
Wang, Haiyang
Zhou, Junnian
Li, Xuan
Yue, Wen
Xi, Jiafei
Zhang, Zhaojun
Fang, Xiangdong
Pei, Xuetao
Source :
Cell Proliferation. Jul2024, Vol. 57 Issue 7, p1-15. 15p.
Publication Year :
2024

Abstract

Ex vivo red blood cell (RBC) production generates unsatisfactory erythroid cells. A deep exploration into terminally differentiated cells is required to understand the impairments for RBC generation and the underlying mechanisms. Here, we mapped an atlas of terminally differentiated cells from umbilical cord blood mononuclear cells (UCBMN) and pluripotent stem cells (PSC) and observed their dynamic regulation of erythropoiesis at single‐cell resolution. Interestingly, we detected a few progenitor cells and non‐erythroid cells from both origins. In PSC‐derived erythropoiesis (PSCE), the expression of haemoglobin switch regulators (BCL11A and ZBTB7A) were significantly absent, which could be the restraint for its adult globin expression. We also found that PSCE were less active in stress erythropoiesis than in UCBMN‐derived erythropoiesis (UCBE), and explored an agonist of stress erythropoiesis gene, TRIB3, could enhance the expression of adult globin in PSCE. Compared with UCBE, there was a lower expression of epigenetic‐related proteins (e.g., CASPASE 3 and UBE2O) and transcription factors (e.g., FOXO3 and TAL1) in PSCE, which might restrict PSCE's enucleation. Moreover, we characterized a subpopulation with high proliferation capacity marked by CD99high in colony‐forming unit‐erythroid cells. Inhibition of CD99 reduced the proliferation of PSC‐derived cells and facilitated erythroid maturation. Furthermore, CD99–CD99 mediated the interaction between macrophages and erythroid cells, illustrating a mechanism by which macrophages participate in erythropoiesis. This study provided a reference for improving ex vivo RBC generation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607722
Volume :
57
Issue :
7
Database :
Academic Search Index
Journal :
Cell Proliferation
Publication Type :
Academic Journal
Accession number :
178178424
Full Text :
https://doi.org/10.1111/cpr.13614