Back to Search Start Over

Achieving hardness‐strength‐toughness synergy in (Ti, W, Mo, Cr)(C, N)‐based cermets.

Authors :
Wang, Lu
Cao, Zhinan
Jin, Na
Liu, Ying
Source :
Journal of the American Ceramic Society. Sep2024, Vol. 107 Issue 9, p5939-5953. 15p.
Publication Year :
2024

Abstract

Ti(C, N)‐based cermets have been considered to be the most potential candidates for WC‐Co cemented carbides as tool material due to their various advantages. However, the trade‐off between hardness/strength and toughness limits their further application. Herein, we present new (Ti, W, Mo, Cr)(C, N)‐based cermets showing superior mechanical properties with hardness of 1525 MPa, transverse rupture strength of 2428 MPa, and fracture toughness of 11.44 MPa·m1/2 by compositional and interfacial modification. The strengthening and toughening mechanisms were revealed by experimental observation and theory calculation. It could be clarified that the high elastic modulus caused by a polar covalent bond in the hard phase and solid solution strengthening of the binder phase attributed to the hardness. The strong interface bonding between the core/rim, inner/outer rim, and rim/binder phases stemming from the composition optimization contributed to super crack resistance. Intergranular fracture in submicron‐scaled hard phases led to the crack deflection, transgranular fracture in the micron‐scaled hard phases consumed more energy due to their high intrinsic hardness and excellent interface coordination. The synergy of multi‐scaled hard particles brought about excellent comprehensive mechanical properties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027820
Volume :
107
Issue :
9
Database :
Academic Search Index
Journal :
Journal of the American Ceramic Society
Publication Type :
Academic Journal
Accession number :
178178757
Full Text :
https://doi.org/10.1111/jace.19870