Back to Search Start Over

Remote Sensing Image Classification Based on Canny Operator Enhanced Edge Features.

Authors :
Zhou, Mo
Zhou, Yue
Yang, Dawei
Song, Kai
Source :
Sensors (14248220). Jun2024, Vol. 24 Issue 12, p3912. 18p.
Publication Year :
2024

Abstract

Remote sensing image classification plays a crucial role in the field of remote sensing interpretation. With the exponential growth of multi-source remote sensing data, accurately extracting target features and comprehending target attributes from complex images significantly impacts classification accuracy. To address these challenges, we propose a Canny edge-enhanced multi-level attention feature fusion network (CAF) for remote sensing image classification. The original image is specifically inputted into a convolutional network for the extraction of global features, while increasing the depth of the convolutional layer facilitates feature extraction at various levels. Additionally, to emphasize detailed target features, we employ the Canny operator for edge information extraction and utilize a convolution layer to capture deep edge features. Finally, by leveraging the Attentional Feature Fusion (AFF) network, we fuse global and detailed features to obtain more discriminative representations for scene classification tasks. The performance of our proposed method (CAF) is evaluated through experiments conducted across three openly accessible datasets for classifying scenes in remote sensing images: NWPU-RESISC45, UCM, and MSTAR. The experimental findings indicate that our approach based on incorporating edge detail information outperforms methods relying solely on global feature-based classifications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
12
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178190588
Full Text :
https://doi.org/10.3390/s24123912