Back to Search Start Over

4S-fluorination of ProB29 in insulin lispro slows fibril formation.

Authors :
Breunig, Stephanie L.
Chapman, Alex M.
LeBon, Jeanne
Quijano, Janine C.
Ranasinghe, Maduni
Rawson, Jeffrey
Demeler, Borries
Ku, Hsun Teresa
Tirrell, David A.
Source :
Journal of Biological Chemistry. Jun2024, Vol. 300 Issue 6, p1-7. 7p.
Publication Year :
2024

Abstract

Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by CD, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
300
Issue :
6
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
178196574
Full Text :
https://doi.org/10.1016/j.jbc.2024.107332