Back to Search Start Over

Solution of the structure of the high-coverage CO layer on the Ru(0001) surface—A combined study by density functional theory and scanning tunneling microscopy.

Authors :
Illner, Hannah
Sakong, Sung
Groß, Axel
Wintterlin, Joost
Source :
Journal of Chemical Physics. 7/7/2024, Vol. 161 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

Structures formed by dense CO adsorption layers can provide information about the balance between molecule–surface and molecule–molecule interactions. However, in many cases, the structure models are not clear. Using density functional theory (DFT) and scanning tunneling microscopy (STM), we have investigated the high-coverage CO layer on the Ru(0001) surface. Previous investigations by low-energy electron diffraction (LEED) and vibrational spectroscopy led to conflicting results about the structure. In the present study, 88 models with coverages between 0.58 and 0.77 monolayers have been analyzed by DFT. The most stable structures consist of small, compact CO clusters with an internal pseudo 1 × 1 structure. The CO molecules in the cluster centers occupy on-top sites in an upright position, whereas the molecules farther outside are slightly shifted from these sites and tilted outward. STM data of the CO-saturated surface at low temperatures, corresponding to a coverage of 0.66 monolayers, show a quasi-hexagonal pattern of features with an internal hexagonal fine structure. Simulated images based on the cluster model agree with the experimental data. It is concluded that the high-coverage CO layer consists of the close-packed clusters predicted by DFT as the most stable structure elements. In the experiment, the sizes and shapes of the clusters vary. However, the arrangement is not random but follows defined tiling rules. The structure remains ordered, almost up to room temperature. The LEED data are re-interpreted on the basis of the Fourier transforms of the STM data, solving the long-standing conflict about the structure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
161
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
178228134
Full Text :
https://doi.org/10.1063/5.0215872