Back to Search Start Over

Preclinical evaluation of [18F]FP-CIT, the radiotracer targeting dopamine transporter for diagnosing Parkinson's disease: pharmacokinetic and efficacy analysis.

Authors :
Ahn, Jae Hun
Kim, Min Hwan
Lee, Kyongkyu
Oh, Keumrok
Lim, Hyunwoo
Kil, Hee Seup
Kwon, Soon Jeong
Choi, Jae Yong
Chi, Dae Yoon
Lee, Yong Jin
Source :
EJNMMI Research. 7/3/2024, Vol. 14 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Background: N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (FP-CIT), the representative cocaine derivative used in dopamine transporter imaging, is a promising biomarker, as it reflects the severity of Parkinson's disease (PD). 123I- and 18F-labeled FP-CIT has been used for PD diagnosis. However, preclinical studies evaluating [18F]FP-CIT as a potential diagnostic biomarker are scarce. Among translational research advancements from bench to bedside, translating preclinical findings into clinical practice is one-directional. The aim of this study is to employ a circular approach, beginning back from the preclinical stage, progressing to the supplementation of [18F]FP-CIT, and subsequently returning to clinical application. We investigated the pharmacokinetic properties of [18F]FP-CIT and its efficacy for PD diagnosis using murine models. Results: Biodistribution, metabolite and excretion analyses were performed in mice and PD models were induced in rats using 6-hydroxydopamine (6-OHDA). The targeting efficiency of [18F]FP-CIT for the dopamine receptor was assessed through animal PET/CT imaging. Subsequently, correlation analysis was conducted between animal PET/CT imaging results and immunohistochemistry (IHC) targeting tyrosine hydroxylase. Rapid circulation was confirmed after [18F]FP-CIT injection. [18F]FP-CIT reached the highest uptake of 23.50 ± 12.46%ID/g in the striatum 1 min after injection, and it was rapidly excreted within 60 min. The major metabolic organs of [18F]FP-CIT were confirmed to be the intestines, liver, and kidneys. Its uptake in the intestine was approximately 5% ID/g. The uptake in the liver gradually increased, with excretion beginning after reaching a maximum after 60 min. The kidneys exhibited rapid elimination after 10 min. In the excretion study, rapid elimination was verified, with 21.46 ± 9.53% of the compound excreted within a 6 h period. Additionally, the efficacy of [18F]FP-CIT PET was demonstrated in the PD model, with a high correlation with IHC for both the absolute value (R = 0.803, p = 0.0017) and the ratio value (R = 0.973, p = 0.0011). Conclusions: This study fills the gap regarding insufficient preclinical studies on [18F]FP-CIT, including its ADME, metabolites, and efficiency. The pharmacological results, including accurate diagnosis, rapid circulation, and [18F]FP-CIT excretion, provide complementary evidence that [18F]FP-CIT can be used safely and efficiently to diagnose PD in clinics, although it is already used in clinics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2191219X
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
EJNMMI Research
Publication Type :
Academic Journal
Accession number :
178276282
Full Text :
https://doi.org/10.1186/s13550-024-01121-6