Back to Search Start Over

High‐Throughput Fabrication of Phosphor‐In‐Silica Glass via Injection Molding.

Authors :
Mohamed, Moushira. A.
Ali, Mohamed. A.
Shaorun, Guo
Liu, Xiaofeng
Qiu, Jianrong
Source :
Advanced Optical Materials. 7/5/2024, Vol. 12 Issue 19, p1-9. 9p.
Publication Year :
2024

Abstract

Phosphor‐in‐silica glass (PiSG) composite is an excellent candidate for highly stable and efficient color converter in high power white light emitting diodes (wLEDs). However, the high‐throughput fabrication of PiSG with different shapes is still challenging for current techniques. Here this study reports the manufacture of transparent PiSG based on YAG:Ce (Y3Al5O12:Ce3+) using injection molding (IM) technique. In this approach, different shapes of centimeter‐sized YAG:Ce‐PiSG pieces are fabricated by using IM of a YAG:Ce/amorphous silica nanoparticles/thermoplastic polymer composite at low temperatures (@ 150 °C) which afterward are debound (@ 600 °C) and densified (@ 1150 °C). Interestingly, the molding time to produce YAG:Ce/silica/polymer green parts is 5 s per piece, implying the capability for high‐throughput production of YAG:Ce‐PiSG. Furthermore, the as‐fabricated YAG:Ce‐PiSG exhibits high luminescence efficiency (>91%) and high chemical/thermal stabilities. Accordingly, high power wLEDs (10 W) are fabricated using the YAG:Ce‐PiSG which demonstrates high luminous efficiency of 144 lm W−1 at 50 mA, closing to that of the wLEDs fabricated by expensive YAG:Ce ceramic plate (i.e., 149 lm W−1 @ 50 mA). The work provides a facile and universal approach for industry‐scale production of PiSG that can be promising for various photonic applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21951071
Volume :
12
Issue :
19
Database :
Academic Search Index
Journal :
Advanced Optical Materials
Publication Type :
Academic Journal
Accession number :
178297037
Full Text :
https://doi.org/10.1002/adom.202400323