Back to Search Start Over

Detecting galaxy tidal features using self-supervised representation learning.

Authors :
Desmons, Alice
Brough, Sarah
Lanusse, Francois
Source :
Monthly Notices of the Royal Astronomical Society. 7/15/2024, Vol. 531 Issue 4, p4070-4084. 15p.
Publication Year :
2024

Abstract

Low surface brightness substructures around galaxies, known as tidal features, are a valuable tool in the detection of past or ongoing galaxy mergers, and their properties can answer questions about the progenitor galaxies involved in the interactions. The assembly of current tidal feature samples is primarily achieved using visual classification, making it difficult to construct large samples and draw accurate and statistically robust conclusions about the galaxy evolution process. With upcoming large optical imaging surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time, predicted to observe billions of galaxies, it is imperative that we refine our methods of detecting and classifying samples of merging galaxies. This paper presents promising results from a self-supervised machine learning model, trained on data from the Ultradeep layer of the Hyper Suprime-Cam Subaru Strategic Program optical imaging survey, designed to automate the detection of tidal features. We find that self-supervised models are capable of detecting tidal features, and that our model outperforms previous automated tidal feature detection methods, including a fully supervised model. An earlier method applied to real galaxy images achieved 76 per cent completeness for 22 per cent contamination, while our model achieves considerably higher (96 per cent) completeness for the same level of contamination. We emphasize a number of advantages of self-supervised models over fully supervised models including maintaining excellent performance when using only 50 labelled examples for training, and the ability to perform similarity searches using a single example of a galaxy with tidal features. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
531
Issue :
4
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
178299735
Full Text :
https://doi.org/10.1093/mnras/stae1402