Back to Search Start Over

Vibration‐Dependent Dual‐Phosphorescent Cu4 Nanocluster with Remarkable Piezochromic Behavior.

Authors :
Zhang, Xiao‐Jing
Sun, Meng‐En
Sun, Fang
Jin, Yan
Dong, Xi‐Yan
Li, Si
Li, Hai‐Yang
Chen, Gaosong
Fu, Yongping
Wang, Yonggang
Tang, Qing
Wu, Yuchen
Jiang, Lei
Zang, Shuang‐Quan
Source :
Angewandte Chemie International Edition. Jul2024, Vol. 63 Issue 29, p1-9. 9p.
Publication Year :
2024

Abstract

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C−p−NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher‐energy emission peak of Cu4 gradually disappeared, leaving the lower‐energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle‐dispersive synchrotron X‐ray diffraction results revealed that the reduced inter‐cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C−H⋅⋅⋅N and N−H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands′ vibration, resulting in the vanishing of the higher‐energy peak. In situ high‐pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
63
Issue :
29
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
178317019
Full Text :
https://doi.org/10.1002/anie.202401724