Back to Search
Start Over
Universal bifurcation scenarios in delay-differential equations with one delay.
- Source :
-
Journal of Differential Equations . Oct2024, Vol. 406, p366-396. 31p. - Publication Year :
- 2024
-
Abstract
- We show that delay-differential equations (DDE) exhibit universal bifurcation scenarios, which are observed in large classes of DDEs with a single delay. Each such universality class has the same sequence of stabilizing or destabilizing Hopf bifurcations. These bifurcation sequences and universality classes can be explicitly described by using the asymptotic continuous spectrum for DDEs with large delays. Here, we mainly study linear DDEs, provide a general transversality result for the delay-induced bifurcations, and consider three most common universality classes. For each of them, we explicitly describe the sequence of stabilizing and destabilizing bifurcations. We also illustrate the implications for a nonlinear Stuart–Landau oscillator with time-delayed feedback. [ABSTRACT FROM AUTHOR]
- Subjects :
- *HOPF bifurcations
*NONLINEAR oscillators
*EQUATIONS
*BIFURCATION diagrams
Subjects
Details
- Language :
- English
- ISSN :
- 00220396
- Volume :
- 406
- Database :
- Academic Search Index
- Journal :
- Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- 178421475
- Full Text :
- https://doi.org/10.1016/j.jde.2024.06.029