Back to Search Start Over

Employing gridded-based dataset for heatwave assessment and future projection in Peninsular Malaysia.

Authors :
Sa'adi, Zulfaqar
Hamed, Mohammed Magdy
Muhammad, Mohd Khairul Idlan
Chow, Ming Fai
Mohamad, Nur Athirah
Basri, Mohd Hadi Akbar
Ahmad, Mohamad Faizal
Sa'adi, Nurzalikha
Alias, Nor Eliza
Yusop, Zulkifli
Houmsi, Mohamad Rajab
Shukla, Prabhakar
Aris, Azmi
Source :
Theoretical & Applied Climatology. Jun2024, Vol. 155 Issue 6, p5251-5278. 28p.
Publication Year :
2024

Abstract

Rising temperatures due to global warming necessitate immediate evaluation of heatwave patterns in Peninsular Malaysia (PM). For this purpose, this study utilized a locally developed heatwave index and a gridded daily maximum temperature (Tmax) dataset from ERA5 (1950–2022). During validation, the ERA5 dataset accurately represented the spatial pattern of Level 1 heatwaves, showing widespread occurrence. Historically, Level 1 heatwaves prevailed at 63.0%, followed by Level 2 at 27.7%, concentrated in northwestern states and the enclave between the Tahan and Titiwangsa mountain ranges. During very strong El Niño events in 1982/83, 1997/98, and 2015/16, Level 2 heatwave distributions were 10.4%, 26.8%, and 15.0%, respectively. For future projection, the model ensemble was created by selecting top-performing Global Climate Models (GCMs) using Kling-Gupta efficiency (KGE), ranked re-aggregation with compromise programming index (CPI), and GCM subset selection via Fisher-Jenks. The linear scaling bias-corrected GCMs (BC-GCMs), NorESM2-LM, ACCESS-CM2, MPI-ESM1-2-LR, ACCESS-ESM1-5, and FGOALS-g3, were found to exhibit better performance, and then ensemble. March to May show the highest increase in all scenarios, ranging from 3.3 °C to 4.4 °C for Level 1 heatwaves and 4.1 °C to 10.7 °C for Level 2 heatwaves. In the near future, SSP5-8.5 projects up to a 40.5% spatial increase for Level 1 heatwaves and a 2.3% increase for Level 2 heatwaves, affecting 97.1% and 57.2% of the area, respectively. In the far future, under SSP2-4.5 and SSP5-8.5, Tmax is projected to rise rapidly (1.5–4.5 °C) in the northern, western, and central regions, with increasing population exposure anticipated in the northern and western regions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0177798X
Volume :
155
Issue :
6
Database :
Academic Search Index
Journal :
Theoretical & Applied Climatology
Publication Type :
Academic Journal
Accession number :
178459746
Full Text :
https://doi.org/10.1007/s00704-024-04946-2